師資陣容
蘇俊榮
副教授
國立交通大學電子研究所 博士
辦公室
科學三館 SC 310
電話
(03)5712121 #56150
實驗室
Supreme Exploratory Nanoelectronics Lab.
(English) Science Building III, SC 758
學歷
經歷
研究專長
研究興趣
重要著作
2002 - 2008
國立交通大學電子研究所 博士
1998 - 2002
國立交通大學材料科學與工程學系 學士
2022/02 -
副教授, 國立陽明交通大學電子物理學系
2019/01 - 2022/02
研究員, 台灣半導體研究中心
2015/11 - 2015/12
訪問學者, 美國普渡大學電機與計算機工程所
2014/09 - 2018/12
副研究員, 國家奈米元件實驗室
2013/01 - 2014/09
研發工程師, 台積電
2011/08 - 2012/12
助理研究員, 國立交通大學
2009/01 - 2011/07
博士後研究員, 國立交通大學
2007/09 - 2008/08
訪問學者, 德國阿亨大學半導體電子研究所
2000/07 - 2000/08
訪問學者, 美國休士頓大學德州超導體中心
  1. 奈米電子元件技術
  2. 半導體元件物理
  3. 非揮發性記憶體元件
  4. 原子層薄膜沉積技術
  1. 奈米電子元件設計與製造技術
  2. 鐵電電晶體:薄膜製備、低功耗元件、終端記憶體應用
  3. 二維材料:薄膜合成與元件研製
  4. 3D垂直堆疊元件和系統技術整合
  5. 半導體元件HK/MG和介面特性研究
  6. 前瞻非揮發性記憶體元件之研製
  1. C. H. Wu, K. C. Wang, Y. Y. Wang, T. L. Wu, C. J. Su*, and C. Hu “Enhancement of Ferroelectricity in 5 nm Metal-Ferroelectric-Insulator Technologies by Using a Strained TiN Electrode,” Nanomaterials 12, 468 (2022)
  2. Y. J. Lin, C. Y. Teng, C. Hu, C. J. Su* and Y. C. Tseng, “Impacts of Surface Nitridation on Crystalline Ferroelectric Phase of Hf1-xZrxO2 and Ferroelectric FET Performance,” Appl. Phys. Lett. 119, 192102 (2021)
  3. C. J. Su*, M. K. Huang, K. S. Lee, V. P. H. Hu, Y. F. Huang, B. C. Zheng, C. H. Yao, N. C. Lin, K. H. Kao, T. C. Hong, P. J. Sung, C. T. Wu, T. Y. Yu, K. L. Lin, Y. C. Tseng, C. L. Lin, Y. J. Lee, T. S. Chao, J. Y. Li, W. F. Wu, J. M. Shieh, Y. H. Wang and W. K. Yeh, “3D Integration of Vertical-Stacking of MoS2 and Si CMOS Featuring Embedded 2T1R Configuration Demonstrated on Full Wafers,” Tech. Digest IEDM, 12.2, San Francisco, December 12-16 (2020)
  4. Y. J. Lin, C. Y. Teng, S. J. Chang, Y. F. Liao, C. Hu, C. J. Su*, and Y. C. Tseng, “Role of Electrode-induced Oxygen Vacancies in Regulating Ferroelectric Wake-up in TiN/Hf0.5Zr0.5O2 Capacitors,” Appl. Surf. Sci. 528, 147014 (2020)
  5. Y. H. Chen, C. J. Su*, T. H. Yang, C. Hu, and T. L. Wu, “Improved TDDB Reliability and Interface States in 5-nm Hf0.5Zr0.5O2 Ferroelectric Technologies using NH3 Plasma Treatment and Microwave Annealing,” IEEE Trans. Electron Device 67, 1581 (2020)
  6. T. H. Yang, C. J. Su*, Y. S. Wang, K. H. Kao, Y. J. Lee, T. L. Wu, “Impact of the Polarization on Time-Dependent Dielectric Breakdown in Ferroelectric Hf0.5Zr0.5O2 on Ge Substrates,” Jpn. J. Appl. Phys. 59, SGGB08 (2020)
  7. M. Si, C. J. Su, C. Jiang, N. Conrad, H. Zhou, K. Maize, G. Qiu, C. T. Wu, A. Shakouri, M. Alam, and P. D. Ye, “Steep Slope Hysteresis-free Negative Capacitance MoS2 Transistors,” Nature Nanotechnology, 13, 24 (2018)
  8. Y. T. Tang, C. J. Su*, Y. S. Wang, K. H. Kao, T. L. Wu, P. J. Sung, F. J. Hou, C. J. Wang, M. S. Yeh, Y. J. Lee, W. F. Wu, G. W. Huang, J. M. Shieh, W. K. Yeh, and Y. H. Wang, “A Comprehensive Study of Polymorphic Phase Distribution of Ferroelectric-Dielectrics and Interfacial Layer Effects on Negative Capacitance FETs for Sub-5 nm Node,” VLSI Symp., T5-1, Honolulu, June 18-22 (2018)
  9. C. J. Su*, T. C. Hong, Y. C. Tsou, F. J. Hou, P. J. Sung, M. S. Yeh, C. C. Wan, K. H. Kao, Y. T. Tang, C. H. Chiu, C. J. Wang, S. T. Chung, T. Y. You, Y. C. Huang, C. T. Wu, K. L. Lin, G. L. Luo, K. P. Huang, Y. J. Lee, T. S. Chao, W. F. Wu, G. W. Huang, J. M. Shieh, W. K. Yeh, and Y. H. Wang, “Ge Nanowire FETs with HfZrOx Ferroelectric Gate Stack Exhibiting SS of Sub-60 mV/dec and Biasing Effects on Ferroelectric Reliability,” Tech. Digest IEDM, 15.4, San Francisco, December 2-6 (2017)
  10. C. J. Su, Y. T. Tang, Y. C. Tsou, P. J. Sung, F. J. Hou, C. J. Wang, S. T. Chung, C. Y. Hsieh, Y. S. Yeh, F. K. Hsueh, K. H. Kao, S. S. Chuang, C. T. Wu, T. Y. You, Y. L. Jian, T. H. Chou, Y. L. Shen, B. Y. Chen, G. L. Luo, T. C. Hong, K. P. Huang, M. C. Chen, Y. J. Lee, T. S. Chao, T. Y. Tseng, W. F. Wu, G. W. Huang, J. M. Shieh, W. K. Yeh, and Y. H. Wang, “Nano-scaled Ge FinFETs with Low Temperature Ferroelectric HfZrOx on Specific Interfacial Layers Exhibiting 65% S.S. Reduction and Improved ION,” VLSI Symp., T12-1, Kyoto, Japan, June 5-8 (2017)
  11. C. J. Su*, T. I. Tsai, Y. L. Liou, Z. M. Lin, H. C. Lin, and T. S. Chao, “Gate-all-around Junctionless Transistors with Heavily Doped Polysilicon Nanowire Channels,” IEEE Electron Device Lett., 32, 521 (2011) (Highly cited)